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1. INTRODUCTION

The phenomenon of adiabatic shear localization has received increasing attention in recent

years as it is a primary mode of ductile deformation and failure in a variety of materials at

moderate-to-high rates of deformation. Indeed, it has long been known to be crucial in

situations such as machining, metal forming, shock loading, and ballistic impact and

penetration, and has even been proposed as an explanation for deep earthquakes (Frohlich

1989). The basic mechanism for adiabatic localization is an autocatalytic process of local

heating (due to plastic work) accompanied by thermal softening which, if strong enough to

overcome strain and strain rate hardening, causes an increase in the local rate of plastic work

and, in turn, intensifies the heating. Of course, plastic flow localization may also occur by

other softening mechanisms such is texture development at large strains or ductile void

growth; these mechanisms may act in concert with thermal softening in the formation of

physical shear bands but this paper focuses strictly on the latter. While recognition of thermal

softening as a localization mechanism dates back to Tresca (1878) (see the article by

Johnson [1987]) and more recently to Zener and Hollomon (1944), it is only during the last

10-15 years that there has been a fairly steady effort to analyze and model this phenomenon.

Consequently, even the qualitative behavior of rather simple material models remains largely

unexplored in this context.

The purpose of this article is to document some recent numerical experiments and

analytical results which extend those of Wright and Walter (1987). As in that investigation, we

consider a simple model problem for shear localization (namely the unidirectional simple shear

of an infinite slab) which simulates some aspects of experiments such as the "pressure-shear

test (Clifton 1990) and the thin-wall tube torsion test (Hartley et al. 1987; Undholm et al.

1980). It should be noted that this model problem ignores a number of potentially important

aspects of both of these types of experiments. For example, while the pressure-shear

experiment is generally felt to be one-dimensional (until lateral unloading waves impinge upon

the sample), it is not unidirectional and a more complete simulation would account for the

pressure-volume response of the material and effects of pressure or volume change on the

material's distortional response. In the case of the thin-wall tube test, the material in the

specimen gauge length is more nearly in a state of plane-stress than of plane-strain as our

model problem assumes. Moreover, the work of Duffy and co-workers (Hartley et al. 1987;
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Marchand and Duffy 1988) has illustrated clearly that the process of shear band formation in

such a test is generally not axially symmetric. However, in spite of its simplicity, the problem

formulation given in Section 2 incorporates the essential material behaviors necessary for
shear band modeling as noted in Wright and Walter (1987): local heating by plastic working,

local heat conduction, thermal softening, and strain rate hardening.

The simplified material model just described is referred to in the sequel as a rigid, perfectly

plastic (RPP) material and the specific instance of this material used previously (ibid) is

considered a "baseline" case against which to compare results for the more complex material
models used here. The homogeneous solution and the linearized perturbation solution

obtained previously for a RPP material (ibid) are extended in Section 3 to account for a

time-dependent boundary velocity. In addition, analytic inequalities are obtained which

describe the effect of varying the thermal softening behavior of the flow law on the

perturbation solution. In Section 4.1, variation of the thermal softening behavior is considered
numerically* for a thermally insulated initial-boundary-value-problem (IBVP) with material

parameters characteristic of a high-strength steel as were used previously (ibiO). These
results are used to evaluate the validity of several analytical "localization" criteria whih have

appeared in the literature. Because the thermal softening behavior of the flow law enters into
different localization criteria in very different ways, the softening variants employed were

selected specifically to emphasize these differences when compared with the numerical

results; ability to fit any specific material data was not the primary concern. In Section 4.2, the

same IBVP is considered; but for rn elastic, perfectly plastic material. An interesting coupling

between the linear elastic response and the basic thermo-visco-plastic localization mechanism

is explored there. Section 4.3 concerns the simulation of a moderately high rate, thin-wall

tube, torsion test on OFHC copper using an IBVP with temperature held fixed at the outside of

the slab. Results from this problem show how shear band formation may initiate through

boundary layer diffusion in the absence of an introduced perturbation. They also illustrate that

strain hardening can produce solutions with complex, seemingly nonperiodic morphologies

and show the strong dependence of localization length scales on the material parameters.

*Some details concerning the numerical method employed appear in the Appendix.
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2. PROBLEM FORMULATION

The model problem considered is the unidirectional shearing of a slab of an

incompressible material which occupies the region between the planes Y = ±h. The field

equations and nondimensionalization used are essentially those of Wright and Batra (1985)

and Wright and Walter (1987); we outline their derivation here for completeness. We suppose

the motion is volume preserving and, with X as the direction of shear, may be written as

x - X +u(Yt), y= Y, z=Z, (1)

where (x,y,z) is the position at time t of the material particle whose reference position (at

time t = 0) was (X, Y, Z). The dimensional equations expressing balance of momentum,

energy, and entropy in the absence of body forces and extemal heat supply take the form

s,- p6=0,

pU + qY - s., - 0,

pTYI - (q/T)T. ,Y a 0, (2)

where v - 0 Is the velocity in the y (= Y) direction, s is the single nonzero component of the

Cauchy stress tensor, U is the intemal energy per unit mass, q is the y-component of the heat
flux, T is the absolute temperature, i1 is the entropy per unit mass, and p the (constant) mass

density. We will use the superposed dot and subscript y to indicate differentiation with respect

to time t and the spatial variable y, respectively. We also assume that the total shear strain y
can be decomposed additively into elastic and plastic parts

a U, - + ', (3)

which implies a corresponding decomposition for the velocity gradient.

Since plastic flow limits the magnitude of the shear stress, we need consider only linear

elastic response, and we also restrict attention to linear heat conduction with no thermoelastic

effects or phase transitions. With regard to the plastic response, we assume that the stress In

a slow, monotone, Isothermal shearing at the ambient temperature T is described by

s - ic(y), where #v Is the plastic strain in that case. We also assume that strain hardening

evolves according to the total plastic work done, regardless of rate, so that
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V = KC(V)*1 - St"~ (4)

which describes the evolution of the strain hardening variable X'; here t,, is the single nonzero

component of the plastic strain rate tensor, not a von Mises equivalent rate. It should be

emphasized that shearing of the sort considered here would typically produce normal stresses

in the y direction and an accompanying pressure which could be expected to influence the

plastic response of the material. The large deformations and temperature changes which are

known to occur in adiabatic shear bands (Hartley et al. 1987) might also induce phase

changes. However, we ignore all such effects here. With these assumptions, we may write

the field equations as

p) = sy,

pc6 = key0 + Sto,

= -

* = st'/IC('V), (5)

in which 0 - T - T, is the temperature relative to ambient, P is the shear modulus, c, is the

specific heat at constant volume, and k is the thermal conductivity. We will consider a rate

dependent flow law of the general form

s = G(evip), (6)

where, for simplicity, we assume that jP is real and e and V are non-negative. Moreover, we

require that G satisfy the conditions

.% 1 <0, aG (0,XV'jP) > 0, aG (0> 0, (7)

for all positive X and for all (0, V, V) in the domain of G with tP * 0, so that the flow law

exhibits thermal softening, strain hardening, and strain rate hardening. The flow law may or

may not possess a non-null elastic range; but if it does, then the yield surface is described by

Isl - G(,'V,0) - 0, (8)

with the criteria for elastic or plastic behavior being given respectively by

Isl : G(eO,0), Isl > G(e,V,0). (9)
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Because the stress s appears in Equations (8) and (9) only through its absolute value, the

model cannot account for asymmetric unloading response such as the Bauschinger effect. In

view of Equation (7)3, we may invert the flow law to obtain

ip = H(O, W,s), (10)

and it is this form which will prove most useful for computations.

Specifically, we shall employ several variants of a multiplicative overstress type of flow law

similar to that introduced by Utoriski (1977)

G(eVtP )= (i)g(e)f(t,). (11)

The thermal softening factor variants to be considered are

g, = (1 - a/O.9)", g2= 1I aO, g3 - e-1a, g4 - -!(1 + e-), (12)

and we will use them in combination with the strain hardening factor

K - . (1 + (13)

and the strain rate hardening factor variants

f, - sgn(t,) (1 + bjiPi)', f2 - sgn(,,) (1 + mln(bljtI)). (14)

Here a,Ko, V.,n,b,m are constant material parameters and sgn indicates the algebraic sign of

its argument. Note that Equations (13) and (14)2 are the forms used by Johnson and Cook

(1983); motivation for this selection of thermal softening factors is given in Section 4.1.

The nondimensional forms of the governing equations result by replacing Equations (5)

and (13) with

)- s/p,

- l.L(O, +-t

i- S/,/K(V), (15)

and
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( ) = (1 + V ,, I K(M ) = (1 + (,/ )n), (16)

respectively, while Equations (12) and (14) are unchanged. The complete set of

nondimensional parameters and variables appearing in Equations (12) and (14)-(16) and the

relations to their dimensional counterparts (barred here to distinguish them) are

P=R YO k klpW1 R YO

;= iz b = b 0 , a=ai0  co, (17)

and

y= , t= ty 0 , ') =/Y, s= ,

0 M=P.X,1 = (01.8) =,,Y

in which h is one-half the thickness of the slab, YO = V0Ih" is the characteristic nominal strain

rate, V0 is a characteristic value of the velocity imposed at the boundary, and Z° is the initial

yield strength of the material. Throughout the sequel, we suppose that the problem is

symmetric about the slab center so that

1)(O,t) = 0, Oe(0,t) - 0 . (19)

The conditions imposed at the specimen boundary by a loading device in an experiment are

generally complex, and we do not attempt to model them in any detail here. Instead, we shall

examine the limiting cases with respect to the thermal boundary condition. First, in order to

compare directly with Wright and Walter (1987) and Wright (1990b), we assume in Sections

4.1 and 4.2 a constant velocity and thermally insulated outer boundary for which

A)(1t) = 1, e(1,t) - o , (20)

and, in Section 4.3, we assume a constant velocity and perfectly conducting outer boundary

for which

6 (1t),,0 (21)
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Because the boundary velocity is constant, Equation (18) implies that

70 =yt = t, (22)

where yo is the nominal strain (boundary displacement divided by thickness). Initial conditions

to complete specification of the IBVP will be given as each problem is considered.

3. PERTURBATION ANALYSIS FOR A RIGID, PERFECTLY PLASTIC MATERIAL

Wright (1 990b) and Wright and Walter (1987) have performed linearized perturbation

analyses for several specializations of the problem class described in Section 2, but in all

cases for a constant velocity imposed at the outer boundary. Here we present similar results

which account for an arbitrary time-dependence of the imposed velocity and analyze the effect

on the perturbation solution of the different thermal softening variants. These results are used

to elucidate some of the numerical results reported in Section 4.1.

We restrict attention to a quasi-static specialization of the thermally insulated problem

(Equation 20) for the RPP material model. In the quasi-static specialization (which was shown

to be valid up to moderate strain rates for the problem considered ibfd), the stress is

independent of y and the momentum equation (Equation [151) is dropped. In addition, the

evolution equation (Equation [1 5L) for 41 is dropped, the strain hardening factor K is replaced

by unity in the flow law (Equation [11]), and 'tp is replaced by 'U, in the energy equation

(Equation [1 52). The stress is now determined by the flow law, s = G(O, 0,,uy), rather than

by the rate equation (Equation [15]). To incorporate the variable boundary velocity into the

field equations, we replace definition (Equation [18]) of the nondimensional velocity u - i/V°

with

V( t) V0  V(t)

In which v(t) - V(t)/V 0 is the nondimensional velocity Imposed at the boundary, V(t) is its

dimensional counterpart, and V. is a characteristic value of V( t). Thus, Instead of scaling

7



by the constant value Vo, here we scale by the time-dependent value V(t). With these

assumptions, the quasi-static field equations reduce to

6 = kOe, + sv.y, s = g(0)f(vY), (24)

where f and g are as in Equation (11), the boundary conditions are as in Equations (19) and

(20). With spatially homogeneous initial conditions

)(yO)=1, 0(y,0) =,, s(0) = g(e,)f(v(O)), (25)

there is a homogeneous solution of the form

H(t)= 1, sH(t) = g(OH(t))f(v(t)), (26)

where 0,(t) is determined by

,,() ~d = f'f(v(t'))v(t')dt' . (27)

If V(t) is constant and the boundary conditions are as assumed here, then the original field

Equations (15) also have a homogeneous solution. However, if V(t) is not constant, then a

homogeneous solution exists only in the context of the quasi-static specialization.

Next, we obtain a closed-form linear perturbation solution to Equation (24) and the

accompanying absolute stability criterion.* We assume an expansion of the form

- OH(t) + 6(y,t), s = SH(t), t = )H(t) + f):(y,t), (28)

in which the mean value of the temperature perturbation has been absorbed into OH (which

also ensures that the stress perturbation vanishes identically) and 0 is the temperature

*A perturbation analysis of this sort, which includes exactly the time variation of the homogeneous solution, was first
given by Wright and Walter (1987) for a constant boundary velocity and the particular flow law given by Equations (12)=
and (14),. Further analyses, which include (for constant boundary velocity) combined effects of thermal softening,
strain and strain rate hardening, and heat conduction, have been presented by Wright (1990a, 1992).
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perturbation about mean.* On substituting these expressions into Equation (24), expanding,

retaining only terms of first order in the perturbations, and rearranging there follows
- fHe 6t = kYY - HfIH (29)

gHf',v 'fH

with boundary conditions

0 =i=Oaty=0andy=. (30)

This problem admits a solution in the form

6 (y,t) = i 0,, cos(nicy) exp(- f,[w(r) + k(n7c)2dr),

0 = 2 £ (O,(y) - OH())cos(nzy)dy, (31)

where w g H, OH() - Ody and fi is recovered from Equation (29). The

condition for absolute stability follows by noting that since w(t) < 0 at all times, the first

Fourier component of 6 has the algebraically largest time rate. Thus, the homogeneous

solution is infinitesimally stable provided

_'HI < k . (32)
"H

This result shows that the homogeneous solution may lose or regain stability as V varies and

that current stability depends only on the current value of V and not on its history.

To ascertain the dependence upon the thermal softening variant of the linear perturbation

solution and stability condition, we need inequalities relating the coefficient functions gH(t)

and g ' (t) for the thermal softening factor variants in Equation (12). First, consider two

*This simplification was suggested by T. Wright.
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variants with one softer than the other in the sense that g, (0) < g2(0) for all 0 in their

common domain. Then Equation (27) implies the inequality

OIH(t)5 
0 2H(t), for t > 0. (33)

However, as the softening variants are monotone decreasing, this inequality does not imply

any definite relationship between g,(t) and g2,,(t). Since general results are not apparent,

we instead consider the specific variants in Equation (12). We will refer to them as

enumerated there, except for g, which is a member of the a-parameterized family

g,(0) = (1 - a0/a)=, for 0 < a < 1,0 :5 0 < a/a. (34)

As is easily verified, these functions each satisfy the conditions

g(O) = 1, g'(0) - -a, (35)

and the inequalities

g"(0) < g=(0) = 0 < g'(0) < g'(0), for 0 < a < 1 , (36)

over their common domains. The family g, also satisfies the inequality

g=,'(0) < g."(0), for 0 < a1 <a2 < 1 (37)

Note that Equations (35)-(37) imply analogous inequalities for the first derivatives and function

values, and it is convenient to consider the g's as ordered by Equations (36) and (37). With

this ordering of the softening variants, it is not difficult to show, for 0 , a1 < a2 < 1 and all t

in the domain of the respective 0 H, that the perturbation coefficient functions follow the same

order

0 < g611(t) < g 2H(t) < g2 .(t) < g3H(t) < g4H(t) I

g9'=1 (t) < g' 21(t) < g'(t) < g'H(t) < g'4H(t) < 0. (38)

Thus, the perturbation solution shows that, other things being the same, more rapid thermal

softening implies smaller magnitudes for 0 H and s - s., but larger magnitudes for 6 and -3

10



As might be expected, more rapid softening is destabilizing in the sense that a softer g yields,

at each time t, an algebraically larger value on the left side of Equation (32).

4. NUMERICAL RESULTS

In this section, we consider the effect of several variants of the material model on the

pre-and post-localization behavior of the shear band problems posed in Section 2. In

Sections 4.1 and 4.2, we assume the boundary conditions at y - 1 are as in Equation (20) so

that the IBVP possesses a homogeneous solution as outlined in Section 3. There are many

sets of initial conditions (i.e., perturbations) which can evolve into a single band at the slab

center, but we consider only one possibility. Moreover, we are not concerned here with early

transient response and, in view of Equations (15), and (15)3, the initial time rates of velocity

and stress may be made to vanish by imposing initial conditions of the form

s(y,0) = s, = const, uy(y,0) = tl,(y,0), Vr(y,0) = V= const, (39)

where subscript I indicates an initial value. The initial velocity gradient follows from the flow

law (Equation [10]) as

'uY,(y) - tlj(y) = H(O,(y),p,,s,). (40)

To afford comparison with previous results of Wright and Walter (1987), we use the same

temperature perturbation as used there and assume no initial plastic deformation

0,(y) = 0.1(1 - y2)9e-5y 2 , V1 = 0. (41)

To avoid a singularity, Equation (40) must be consistent with the boundary condition (Equation

[20]) and this is achieveC simply by using an appropriate value of s,. Lastly, in Sections 4.1

and 4.2, we assume material parameters as in Table 1 and slab thickness h = 3.47 mm as

used before (ibid).

4.1. Effect of Thermal Softening Variation. Here we examine effects due to qualitatively

varying the thermal softening behavior (Equation [12]) of the flow law independently of strain

hardening or elasticity. Computationally, these effects are nullified by setting the strain

hardening parameter n to zero and using a value of the shear modulus much larger (e.g.,

11



Table 1. Material Parameter Values in SI Units for a Moderately High-Strength Steel

7860 49.2 473 6.43x 104  104

m 5 VO n i 0

0.0251 8x10'0  0.017 0.09 6.02xl0

1,000 times) than that given in Table 1. Because the shear stress is limited by the flow law,

the increased modulus ensures that the stored elastic energy is reduced to an insignificant

level. The four softening variants have very different behavior for large 0, but are normalized

in the sense that (for the same value of a, chosen as 1/0,,,t where 0,,,t is the dimensionless

melting temperature) they have the same value and slope at 0 - 0

g, (0) - ) as 0 -4 0.9/a

g2(0) -- 0 as 0-- 1/a

g3(o) -- 0 as 0 --

g4(0) -+ 0.5 as 0 Co. (42)

The linear variant g2 is known to be exceptional, in that it admits a "quasi-steady"

post-localization solution (ibid) in which the velocity gradually becomes time-independent

following localization. It is also the "boundary case" (g" = 0) between classes of softening

variants which are strictly concave (g" < 0) and strictly convex (g" > 0). Hence, we examine

variant g, as an example of the former class and g3 for the latter. Variant g4 is considered

because, in contrast with the other three variants, it tends to a positive value for large 0.

Strain rate factor (Equation [141,) is used here and in Section 4.2.

As a baseline result, we consider the same linear thermally softening case (g(0) - g2 (e)

and ' ,, - 500/s) as reported by Wright and Walter (1987). The plastic strain rate t, (in this

subsection numerically equal to uy) is plotted as a function of the spatial coordinate y and

nominal strain y. in Figure 1. Regarding these solution surface plots, we note that the

logarithmic y-axis scale Is often necessary to resolve highly localized band structures and it Is
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sometimes necessary to reorient the base-plane axes on the plot in order to display certain

portions of the surface. Also, since the nominal strain and dimensionless time are numerically

equal in this section (Equation [22]), we will use the symbol 7, as the time-axis label and use

it sometimes when referring to the time t. Figure 1 clearly shows the three-stage band

formation process of slow early growth, then sudden localization after a delay, followed by

slow post-localization variation. Referring to Figure 2 (note the expanded time axis), the

temperature is fairly low compared to 0 ,, , - 10 and the stress close to its homogeneous

value until just before localization while the maximum time rates of to, 0, and s occur

simultaneously. Note also that the internal time step A T, used by the differential equation

integrator is much reduced during the rapid localization, indicating numerical stiffness in the

system of equations (Equation [A-10]), and then returns to an imposed maximum value.

These results agree exactly with those reported previously (ibid) which serves as a check on

the finite element method used here and on the efficacy of the artificial elastic modulus

approximation to the RPP material model.

A consequence of the weak strain rate hardening (m << 1) is that i, undergoes very large

deviations during localization from its values in the homogeneous solution. Thus, the

differences between the softening variants may be seen most easily in plots of this variable,

which appear as Figures 3, 4, and 5. As shown previously (ibid), the asymptotically steady

behavior of t,, holds only for linear thermal softening. The severity of localization is

emphasized by referring to Equation (18), whence the maximum dimensional strain rates at

the slab center for y, < 1 range from 2.1x105/s for softening variant g4 to 106/s for softening

variant g,. Note that for the concave variant g,, the strain rate localization intensifies during

the third stage but, for the convex variants g3, and especially g4, the strain rate localization

decays during the third stage.

A crucial aspect of the band formation process is the delay between loss of stability of the

underlying homogeneous solution and the occurrence of severe localization with its attendant

stress collapse. As may be seen in Figure 1, this delay is substantial even though the

homogeneous solution Is unstable at all times in this case. As previously (ibid), the

localization strain y,,, Is defined as the value of y. at which d%(O,y)/dy, attains its
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maximum. The values of ., 0, and s at the slab center are plotted in Figures 6-8 against

y0 and y,o, is summarized in Table 2. Note that the values of y,,, order in the same way as

the softening functions were ordered in Section 3. This ordering is also apparent in the pre-

and post-localization levels of strain rate and stress, with the central values of both fields

sustaining the largest deviation from homogeneous response for the softest variant, g,. The

behavior of the temperature is more complicated. Before localization (e.g., Y, = 0.24) the

central values are ordered in opposition to inequality (Equation (36]) but, referring to Figure 7,

the post-localization order is reversed so that variant g4 sustains the largest temperatures

during the late stage.

Table 2. Variation of Nominal Strain, y0 at Localization With Thermal Softening Variant for
Initial Conditions (Equations [39H41]) at o = 500/s as Computed by the Finite
Element Method and by the Locally Adiabatic Solution of Wright Described in
Section 4.1

Softening Variant g1  g 2  g 3  g 4

(YIoc),,,, 0.262 0.265 0.285 0.320

(y,.c)wh 0.252 0.254 0.273 0-298

The linear perturbation analysis in Section 3 provides qualitative agreement with the

numerically observed effect of the different softening variants as follows. The initial values of

H(0 ), H( 0), 6( 0 , 0 ), §t( 0 , 0 ), are respectively equal to 0.023, 1.47, 0.077, 6.11. Note that

the central value of 6 is initially both larger and increasing more rapidly than is 0.. Even at a

time after the perturbation solution has lost validity (e.g., when 0 H = 1 ), Ht ranges from 1.31

(for g) to 1.33 (for g4) while 6, still has larger values ranging from 6.17 to 4.96. Thus,

although 0H(t) increases less rapidly for a softer g-function, 6(0, t) more than compensates

producing larger central temperatures. As noted at the end of Section 3., a softer g also

yields larger i.y and smaller s, all of which agree with the numerical results.
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This reversal in the ordering of the central temperatures during severe localization is

counter intuitive since the central values of accumulated plastic work continue in the same

order as did the central values of B prior to localization. Figure 9 shows the accumulated

plastic work as a function of y (note the log axis) at y, = 0.5 which is well into the

post-localization stage. Observe, however, that the width of the band* w,, just after severe

localization is smaller by about a factor of 10 for variant g, as compared to g4. While the

intensity of plastic working (and, consequently, of heat production) at the band center is much

larger for variant g,, so also is the effect of heat conduction because the band is narrower.

Indeed, the effect of the dimensionless thermal length scale /. - k12 = 0.046 may clearly be

seen by comparing the post-localization profiles of plastic work in Figure 9 with the

temperature profiles in Figure 10; note the logarithmic y-axis scale in each case. When

I >W> wb, as is the case here for all the softening variants and particularly g, and g2, the

near-center 0 profile very quickly becomes independent of the profile of ,,. Immediately

following rapid localization, the 0 profile is essentially determined by the total rate of work

supplied through the outer boundary and the thermal diffusion which would occur if this energy

were supplied as a heat flux through the boundary at y = 0. The opposite, approximately

adiabatic case with Io << wb (which characterizes the prelocalization regime for the diffuse

perturbation [Equation (41)1] used here) would persist only if the localization were much

weaker. In such a case, W,, would be nontrivial at lengths greater that wb and the 0 profile

would be primarily determined by the local value of W, rather than by thermal diffusion.

Next, we turn to evaluation of several analytical criteria for shear band formation which

have appeared in the literature. Because some of these criteria depend on the long time

(t -4 -) behavior of analytical solutions to shear band problems, it is necessary to consider

this limit numerically as well.** As noted above, the choice of softening variant has

* In rough terms W, is the width of the material layer which is being plastically worked at a nontrivial rate. For the

problem considered here, we define W, to be twice the value of y at which W, (or tf, since s is uniform) drops to

10% of its value at y , 0; compare the solution surfaces for t, with Figure 9.

"Both analysis and numerics at long times may be criticized as *lacking physicality." However, it is sometimes the

case that such results do bear on what occurs at earlier times. It is this question that we explore here.
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substantial effect on the post-localization profile of jp. Referring to Figure 11, by the time y.

= 20 the central value of j'. has decayed from its peak to a value of about 150 for variant g3,

but to a value of about 3 for variant g4. For the latter, it appears that u,(y,t) -+ 1 as t -- oa,

which also implies that y(y, t) is asymptotic to y, = t in the same limit. Since the stress

remains independent of y, this implies that Wp(y, t) - 1/2 in view of Equation (42)4. In view

of the thermally insulated boundary at y = 1 and asymptotically y-independent heat production,

the mean temperature will continue to increase without bound but with (Omax - min) -4 0.

Thus, while the other softening variants yield persistent localization of ,P, variant g4 appears

to lead to a state of uniform shearing as t -. -.

In this connection, Tzavaras (1986) has considered the locally adiabatic version (k = 0) of

the current problem for a RPP material with flow law

s - g(e)sgn(oy) l',l ,  gN O) > 0. g'(e) < o, eC(o,) . (43)

Assuming sufficient smoothness of the initial data, he concludes that if there exists some

v < 0 and N < such that

1 1< I - 1 < ()g" () _ N , for all 0e(0,e), (44)
m V g'(0)2

then every classical solution (to the momentum and energy balance equations) tends to a

state of uniform shearing as t -+ o. Note that this conclusion still follows if Equation (44)

holds only for all 0 larger than some fixed value. It is interesting to note that Equation (44)

cannot be satisfied for the first three softening variants for any 0 in their respective domains

and, as the finite element calculations indicate, localization of tp is persistent in these cases.

However, for variant g4, Equation (44) is satisfied provided 0 > 17.7, so that after an initial

localization, Tzavaras' theorem predicts eventual uniform shearing in qualitative agreement

with our numerical results.* Hence, while his theorem is correct as stated, it does not

*Since Tzavaras assumed p - c, - 1, the values of his dimensionless parameters are different from those used here
and quantitative comparison is not possible. Also, since heat conduction is stabilizing, strain rate decay begins at
lower temperatures in the numerical calculation (when 0(0,) - 5) than would be expected from Tzavaras' locally
adiabatic analysis, as may be seen by comparing Figures 6 and 7.
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preclude localization unless Equation (44) is satisfied for all 0 e (0,,, -), where
8Ml. == mino....0e,(y).

Another example is the paper of Molinari and Clifton (1987) in which the simple shear

problem is viewed as an approximation to the torsion of a thin walled tube at high strain rate.

Using a locally adiabatic, quasi-static analysis for a material with flow law of the form

Equation (43), the same boundary conditions as used here, and a perturbation in sither the

wall thickness or initial temperature, they obtain a criterion for "L.-Iocalization" (by -'iich is

meant the O(yL,t) - = as t - -) at the position yL for which

(YL)(lm)m YL) g(e) Itm d6 < cc, (45)

attains its minimum value with respect to y. Here I is thr lube wall thickness and 0, is the

initial temperature. Of course, this result depends on convergence of the integral in

Equation (45) at each y. and nonconvergence (the case for softening variant g4) implies that

L.-localization does not occur. Hence, because of its emphasis on the high-temperature

ix 4avior of the flow law, this criterion correctly detects the trend toward uniform shearing at

1c ig time, but fails to catch the earlier transient localization.

In contrast with these examples, Wright (1 990b) has obtained an approximate "parametric"

solution for the quasi-static, perfectly plastic problem. In general, this scheme involves

solution of the heat equation with a nonlinear source term, followed by a pair of numerical

quadratures. The calculations required to obtain 7,,, may be performed easily on a personal

computer. The values of y,,, so obtained agree closely with those from finite element

computations over a wide range of the nominal strain rate (Wright 1990b, Figure 2). For the

quasi-static, locally adiabatic problem (with or without strain hardening), Wright's scheme

provides an exact solution and for the RPP material it requires only two numerical

quadratures. The latter form was computer-coded independently and, as Table 2 illustrates, it

gives estimates of y,,, which agree very closely with the values from the finite element

program. The agreement Is due, in part, to use here of a relatively diffuse temperature
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perturbation and large 0 both of which tend to reduce the effect of heat conduction. Note

also that Wright's scheme handles cases in which the integral in Equation (45) diverges.

For m < < 1, Wright uses an asymptotic analysis to show that his estimate of ^1,o,

depends on g primarily through the softening parameter which for an arbitrary softening

variant is defined by a = -g'(0). That is, given several different g's for which a takes the

same value, prior to severe localization, the parametric solution is approximately independent

of the particular g. He also shows that y,, must be proportional to a/m = Xab which he

terms the shear band susceptibility. Moreover, for a sufficiently small perturbation (i.e.,

maXo.y.C ,(y) (a/m) << 1) of simple shape

0,(y) = e cos(Xy), (46)

and in the locally adiabatic case, Wright obtains the explicit estimate

aCil ] + 82 (2)J 8±
______ 5= In.-1n _ (47)

Note that this result depends on g only through a and the parameter C which is of order

1 + O(m) and which depends weakly on the overall shape of g. As may be seen in Table 3,

C varies in accord with y4 o although the magnitude of variation is smaller than needed to

account for the variation of y,, in Table 2.

Molinari and Clifton (1987, Equation [33]) also obtain an estimate for the point-wise strain

yf(y) at severe localization. Using variables introduced here, for flow law (Equation [431) and

with perturbation (Equation [46]), their estimate of yoc follows as

("foC)Mc fy(y)dy f -edy.
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Table 3. Variation of Shape Parameter "C" Appearing in Equation (47)

Softening Variant g, g2  g3  g4

C 0.973 0.976 1 1.03

Note that as in the locally adiabatic form of Wright's scheme for a RPP material (used to

obtain Table 2), Equation (48) really involves two quadratures: one to obtain YC(y) and the

other as shown. For the material constants in Table 1 and e 0.1, Wright's scheme yields

(YIo)wfht = 0.299, Equation (48) yields (y¥j,)O = 0.316, and the finite element value is

(yoc)f, = 0.305. While (Yo)wht and (yjo)mc each follow from a locally adiabatic analysis,

and so should provide a lower bound to (y1,o)w, only the former does. The difficulty in the

latter case seems to lie in the use of the nominal rather than local strain rate in the flow law to

obtain an expression for the stress (Molinari and Clifton 1987, Equation [29]). In the current

notation, this approximation is s = g(o(y, t)), while the exact result for flow law

(Equation [431) is s - I g(e (yt)" dy) , as shown by Wright (1990b). The error

incurred by the approximate stress depends on the extent to which 0 has localized (in the

FEM solution) when y, = (Yio)mc.

4.2. Elastic Effects in the Perfectly Plastic Case. In this section, we illustrate a coupling

between the basic localization mode of the previous section and the elastic response of the

material. We consider the same IBVP for the same flow law with softening variant g3 as

given by Equation (12)3. First, Figure 12 shows a full-field view of the velocity in the rigid

case for a range of y, containing y,,; note the orientation of the base plane axes and the log

scale in y. Restoring the elastic modulus p to the value listed in Table 1 produces the result

shown in Figure 13. The effect of the elastic energy stored in the slab is nontrivial in that the

velocity in the elastic case overshoots that in the rigid case by nearly 40%. Figure 14 shows

that, in spite of the substantial overshoot in velocity, the localization remains approximately

quasi-static as the stress gradient a slay Is too small to be seen at this scale. In Figure 15,

where the central values of ',,, 0, and s for both cases are superimposed, we see that in the
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elastic case localization occurs slightly earlier, with a slightly stronger stress drop and

temperature increase, and a considerably stronger increase in t, in accord with the overshoot

in u. In all cases, however, the deviations from rigid response are rapidly damped and the

elastic response decays back to the rigid case.

To probe the effect of varying the nominal strain rate, elastic computations identical to

those just described were performed at i. = 750/s. The results in the rigid case are similar to

those at the lower value of -I-, although the localization is a little more severe. For example,

comparing Figures 15 and 16, the peak value of '. in the rigid case increases about 50% in

proportion to the change in YO,, as observed by Wright and Walter (1987). In contrast, the

elastic effects are much stronger at the higher rate (e.g., the maximum overshoot in velocity

[not shown] is more than twice as large). Referring to Figure 16, the maximum value of the

ratio (t,(O -ONUIl(Isp(Ot).0 is about 5 at :* = 750/s as compared with 1.5 at 1, = 500/s.

Moreover, as indicated in Figures 17 and 18, the temperature and stress show strong

temporal oscillations, whereas at the lower these oscillations are too small to be seen on

top of the underlying rigid response. The degree to which the shear band serves to

concentrate the stored elastic energy is made clear by observing that the prelocalization,

stored elastic energy would produce a temperature increase of about 10 C if converted

completely and adiabatically to heat In contrast, the maximum difference in central

temperatures 9*.. - 0,, is about 2750 C. Note also that the stress in the elastic case

(yo = 750/s) shows a mild spatial gradient indicating that wave propagation effects are

beginning to become important. This is in contrast to earlier results (ibid) which for the same

RPP material model (but with thermal softening variant g2) and the same IBVP indicate that

wave propagation does not become important until 7o exceeds 5,000/s-10,000/s.

The effects just described are certainly driven by the release of stored elastic energy upon

severe localization but the explanation for the strong increase in their magnitude with TO is

more subtle. With the Increase in nominal rate, there is an increase in prelocalization stress,

but the factor Is only (1.5)" - 1.01 (where m is the strain rate hardening exponent) and so

cannot account for the observed difference. Part of the increased magnitude may be
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attributed to more intense localization in the underlying rigid case. Referring to Figures 15

and 16, the maximum rate of stress collapse is larger at YO = 750/s and (after accounting for

the difference in y,,, by shifting the 750/s stress curve to the left by Ayo = 0.05) the stress

drop over the yo-interval from 0.2725 to 0.2925 (Figure 16) is 20-25% larger than the

corresponding drop at YO = 500/s. Since the elastic energy is proportional to S2, it follows that

15-20% more stored energy is available to drive the shear band at 750/s than at 500/s.

Moreover, as noted by Wright and Walter (1987), the band width Wab in the rigid case is

inversely proportional to ., in the range from - 10/s to = 1 04/s. Thus, based on comparison of

the rigid cases alone, an intensification of 70-80% is to be expected in the elastic case at the

higher rate. Of course, the situation is really more complex than this since the flow of stored

energy into the core of the shear band is autocatalytic in that it dynamically intensifies the

stress drop which, in turn, releases more energy. Moreover, for in the range considered,

the elastic wave speed is sufficiently large so that stress changes produced at the band core

propagate to the slab boundary very rapidly compared to the stress rate at the core. For

example, at 750/s, the nominal strain increment needed for an elastic wave to traverse the

slab is &y, = 8(10-4). Consequently, in the cases discussed here, elastic wave propagation

does not limit the rate at which stored elastic energy flows into the shear band. Once the

initial localization has occurred, the unloaded outer portions of the slab (comprising almost all

the thickness) execute essentially a free oscillation with the shear band acting as a sort of

thermo-visco-plastic damper.

In a related study, Batra and Kim (1990) examined the same IBVP for a flow law similar to

that employed here (work hardening was included)-the same material parameters but with an

artificially large thermal softening coefficient and a linear thermal softening factor as in

Equation (12)2. Even though the nominal strain rate was only 500/s, they observed, upon

occurrence of severe localization, a well-defined elastic unloading wave propagate from the

center of the slab and reflect from the outer boundary, presumably because of the very strong

thermal softening they used. They also observed a large overshoot in the nondimensional

velocity (values as large as 15) and some oscillation in the plastic strain rate. The computed

speed of propagation of the unloading wave agreed very closely with the elastic shear wave

speed. Their observations are consistent with those reported here and, had their computation

21



been continued to larger nominal strains, it seems likely that thermo-visco-plastic oscillations,

of the sort noted here, would have ensued. Further numerical study regarding the

dependence of the elastic effects on various parameters and the boundary conditions is

warranted.

4.3. Simulation of a High Rate Torsion Test. In this section, the flow law of Johnson and

Cook (1983) is used to simulate a torsion test on OFHC copper as reported by Lindholm et al.
(1980) and analyzed by Johnson (1981). The Johnson-Cook law is in the form of Equation

(11), with ic(N) and f(I.) given by Equations (13) and (14)2, respectively, and g(O) taking

one of several forms depending on the material (Johnson 1983a, 1983b). In this case, ic(W)

describes the isothermal plastic stress-strain curve at a reference strain rate of = /s, and

setting b = 1 in Equation (14)2, ensures consistency with this interpretation of ic. The tests

reported by Lindholm et al. (1980) cover a range of nominal strain 0 < y, < 7 and a range of

nominal strain rate 0.009/s < YO < 330/s. The isothermal flow law parameter values used for

the simulations reported by Johnson (1981) were obtained by curve-fitting to Lindholm's data

but only for o < 9.6/s because of thermal softening at the higher rates. Johnson suggests a

bi-linear form for the thermal softening factor g based on static experiments performed by

Hawkyard et al. (1968) at nominal strain y, = 0.9. To roughly approximate this data with a

smooth function, we use here g(O) = (1 - ae)' with 1/a = 08t and p - 3. Lastly, note that

we use V, as the strain hardening variable, which evolves according to Equation (4), whereas

Johnson used y, = f I t', I dt. Thus, even though we use the same parameter values and

give the same interpretation to the right side of Equation (14)2, our isothermal flow law is not

identical to his.

The torsion specimen used in Lindholm et al. (1980) has a gauge length of 3.18 mm with

a wall thickness of 0.79 mm, while the included angle between the gauge length and the

transition to the specimen shoulder is 1190. Consequently, it is an acceptable approximation

to ignore any loss of heat along the lateral surface and to assume that the shoulders act as

rigid, isothermal heat sinks. The dimensional material constants obtained from Johnson et al.

(1983a) appear in Table 4 and the thickness h = 1.59 mm used in the computation

corresponds to one-half the gauge length. The model problem considered here ignores

multidimensional aspects of the experiment such as axial normal stresses and strains and

radial or circumferential nonuniformity as the shear band grows. These and other features of
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thin-wall tube experiments may, of course, have significant effects on observed results

(Hartley et al. 1987; Marchand and Duffy 1988).

The specific IBVP considered here corresponds to the fastest experiment reported in

Lindholm et al. (1980) for which "0 = 330/s; the results appear in Figures 19-26. To model

this experiment, uniform initial conditions

Uv(y) = 1, 0,(y) = 0, i,(y) = 0, s,(y) = 1 + mlog(b), (49)

are used along with boundary conditions (Equations [19] and [21]). In contrast to the cases in

the previous two sections, no perturbation is introduced here. Initially, 6 is uniform and

8yy = 0 for y r (0,1). As 0 increases in the interior, a thermal boundary layer develops at

y = 1 which gradually diffuses toward the center as may be seen in Figures 19 and 25. Note

that the stress remains uniform in y (Figure 20) and that, in spite of strong strain hardening at

small nominal strains (Figure 22), plastic flow has almost ceased for y > 0.7 by the time

y= 2 (Figure 26).

Bums (1990) has studied the early stages of this thermal boundary layer mechanism for

shear band formation and concludes that when the dimensionless thermal conductivity is

sufficiently large, a single central shea band is to be expected, as occurs here at y, - 2.

This mode of localization is quite different from that which occurs from perturbation of a

homogeneous solution. In particular, strain rate localization begins during the initial rapid

stress increase (when y0 < 1), whereas for the perturbed homogeneous problem dsldy, > 0

signifies (at least temporary) stability in the strain hardening case.*

*General conditions ensuring the infinitesmal stability or instability of a strain-hardening homogeneous solution have
not yet been determined. Elementary criteria, such as are relevant to constant coefficient systems of ordinary
differential equations, do not apply. As an example, Hale (1980, Example 7.1) cites a specific linear, nonconstant
coefficient, second-order system (of the form x(t) - A(t)x(t) in which the A,(t) are sinusoids. A(t) has two distinct,
constant, eigenvalues both of whose real parts are strictly negative. Were A itse/fconstant with the same eigenvalues,
then all solutions of the system would decay exponentially. Nonetheless, Hale shows that for the given there are
solutions which grow exponentially at all times. The shear band problem is, of course, far more complex than this
example and much deeper analyses are needed.

In this connection, Wright (1 990a, 1992) has shown that strain hardening introduces a tempora boundary lyer into
the solution of the linearized perturbation equations so that their Initial behavior is not representative of their behavior
at slightly later times. Following this boundary layer, it is also possible for perturbations to grow briefly but then to
decay and so not lead ultimately to localization.
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The initial localization in this case is driven by propagation of the thermal boundary layer

and will occur with or without strain hardening. A less obvious consequence of strain

hardening is the subsequent complex interaction of the various fields. Computation for an

effectively rigid version of the same problem indicates that at this nominal strain rate elastic

energy release has almost no effect on the solution. To interpret the solution features that

develop, it is easiest to follow the t,, curve on Figure 23. Following the initial peak at

y - 2.2, there is a subsequent decay followed by another peak at y, = 4.2. The pattern

then repeats much more strongly for 4.2 < y, < 7. Referring to Figures 19-23, the t, peak

at y, = 4.2 is accompanied by a slightly delayed peak in 0, a valley in s (at 7, - 4.6), and a

rapid increase in 4t. This sets the stage for the collapse of the '. peak; recall that t, is an

increasing function of s but a decreasing function of 0 and V. Once the 0 profile is

sufficiently localized, diffusion begins to slow its growth but the magnitude of strain hardening

V' (O,T) at the slab center increases while s decreases so that y.(,T)/ y also

decreases. Thermal diffusion also causes softening of the material at larger y with a

corresponding increase in f. there. This forces t,(0,ya,) to decrease because f t, dy is

conserved in view of Equations (19) and (20). As ,,(O,T,) begins to decrease, so does

heat production which accelerates the decay of 6 causing 0 to peak and then decay. Thus,

thermal hardening due to cooling is added to the strain hardening accumulated previously

which drives i,(OT,y.) almost to zero even though s increases concurrently (due to work and

strain rate hardening which occur farther out in the slab).

The sharp peak in j,o at Ty, - 7 occurs by roughly the reverse of the process just

described. For 0 < y:5 0.1 and 6.3 5 y,5 < 6.7 , 0. is very slightly positive (due to heat

production farther out in the slab) so no heat is lost from the center during this period. The

stress continues to increase until Ty, - 6.5 but no strain hardening occurs near y - 0 until

T, - 6.7. Hence, ,, and 0 begin to increase simultaneously at y. - 6.2 with weak strain rate

hardening initially being the only effect to balance the stress increase and thermal softening.

The strain hardening which begins to accumulate later in the localization reduces the

magnitude of stress drop (compared to the RPP response) and so actually intensifies the
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localization. Although not shown in the figures, this computation was carried until y, - 15

with the pattern of irregular oscillation showing no sign of abating.

The only time history reported (Lindholm et al. 1980; Johnson 1981) for the relevant test is

a curve of stress against nominal strain. The experimental stress F increases rapidly until a

fairly sharp knee at y, - 0.5 continues to rise slowly for 0.5 < y, < 2, more rapidly for

2 < y, < 3, varies little for 3 < yo < 5 with a mild peak of F - 0.21 GPa at y, - 4, and then

decays rapidly to s = 0.15 GPa between 5 < y, < 7. Postmortem examination of the

specimen (Undholm et ai. 1980) revealed considerable surface necking centered around the

shear band so that fracture was judged to be imminent. The maximum stress on Figure 23

(sm 0.18 GPa at y, = 1 ) is quite close to the experimental value at the same 7, (Johnson

1981, Figure 9) indicating that the early strain hardening of the material is modeled accurately.

However, at larger strains, our computed stress consistently lies below the experimental value

and fluctuates more rapidly. The same computation has been performed with different values

of the thermal softening factor exponent: p = 2 and p = 1.5. The solution structures are

qualitatively similar to the p = 3 case, except that the various fluctuations occur more slowly

and are less severe. The stress levels are generally higher and the locations of the initial

peaks are delayed considerably. For p = 1.5, s decays slightly after an initial peak at y, - 3

and does not peak again until well after the experiment had stopped. Of the three cases

calculated here, p = 2 gives a stress history which agrees most closely with the Johnson's

EPIC-2 simulation of the experiment (ibid) but none of the calculations did a particularly good

job of reproducing the shape of the stress history.

The shape of the experimental curve (ibid) suggests that a flow law with stronger strain

hardening for y, > 1 would bring the simulated stress closer to that of the experiment. From

Equations (6), (11), and (15)4, it follows that */I{p - g(8)f (tp) so that yp exceeds V after just

a little thermal softening has occurred, as may be observed in Figure 24. Use of yp rather

than -# (with the same material constants) would increase the degree of Isothermal strain

hardening. For example, substitution of the values of V and yp at y, - 6 on Figure 24 into

Equation (16)2 gives 4.21 and 4.58, respectively. However, increased plastic work also leads

to increased softening and so partially offsets the larger isothermal stresses; viz. the net effect

of using 1, (/bio) was not sufficient to reproduce the shape of the stress history accurately. It
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seems clear that what is really needed is a more refined functional form of the flow law fit to

experimental data over a much wider range of the constitutive variables. Of course, the

thin-wall tube is not the best geometry for obtaining constitutive data at very large strains.

However, it is a good test for determining the modeling efficacy of a high rate flow law

because, assuming a specimen of sufficiently "clean" material, shear localization can be

initiated by thermal boundary layer diffusion or by wall thickness variation rather than by

material defects whose strength is far harder to quantify.

5. DISCUSSION

The intent of this research has been to explore the behavior of a system of field equations

which describes some aspects of adiabatic shear band formation in one space dimension.

One of the most important observations is that shear band formation can drive the material

into extreme ranges of strain, strain rate, and temperature. This is especially true in the

context of ballistic penetration, because there shearing deformations may be accompanied by

large pressures which can delay fracture until extremely large strains have accumulated at the

band core. For example, when thin-wall tube torsion tests are performed on a tungsten heavy

alloy (WHA), actually a metal-particle/metal-matrix composite (Coates and Ramesh 1990),

some shear localization may occur before fracture. However, local shearing of the tungsten

particles is much less severe than that which is observed in a WHA penetrator remnant

impacted at ordnance velocities. In a more quantitative example, Moss (1981) performed plug

punching experiments on an armor steel whose microstructure contained "reference bands*

(planes of chemical inhomogeneity) which were oriented perpendicularly to the direction of

plugging. The reference bands were clearly visible inside the *transformed" shear band which

formed at the plug boundary to within about 4 pin of the edge. The local strain in the shear

band was computed from the rotation of the reference bands. Moss judged that the shear

strain varied exponentially with distance from the transformation Interface, that the maximum

strain was greater than 500 and that the maximum strain rate approached 10/sec. No

pressure was applied other than that produced by the punch, whose velocity was 20 m/sec.

Based on this experimental evidence and results presented here, several general

observations may be made. First, shear band formation need not be followed immediately by

fracture or complete loss of strength (Section 4.3); exactly when either ensues depends
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strongly on loading (i.e., pressure) and material microstructure. This implies that

post-localization modeling of individual bands is an essential step in the development of

phenomenological models for the various effects of shear bands on a material's mechanical

response. The shear band kinetics and post-localization morphology in the problem

considered here depend strongly on the underlying homogeneous flow response of the

material. Consequently, there is a need for constitutive data and thermo-visco-plastic flows

laws which are valid over a very wide range of strain, strain rate, temperature, and pressure.

Although probably unavoidable, application of constitutive data and flow laws obtained from

low-rate, low-pressure experiments to shear band simulation may lead to spurious conclusions

(Clifton 1990).

Building on Wright and Walter (1987) and motivated by Wright (1990b), the effect of

qualitative variation in the strength of thermal softening was considered analytically in

Section 3 and numerically in Section 4.1. An important result was to verify that Wright's

parametric solution scheme (ibkio) can provide an excellent estimate for the nominal strain at

which shear banding occurs. It was also shown that, depending on material behavior, some

aspects of shear band formation may be transient (viz. the decay of strain rate localization).

Consequently, analytical localization criteria which emphasize the long-time behavior of the

model problem may lead to spurious conclusions.

Calculations in the elastic perfectly plastic case showed how the shear band can act to

concentrate in the band core the elastic energy stored in the rest of the domain and so

enhance the severity of the localization process. The elastic effects may be quite strong even

though the stored energy density is small, and they depend stron,;y on the severity of the

underlying localization process.

Simulation of a moderately high-rate torsion test of OFHC copper revealed that strain

hardening can add complex, nonperiodic structure to the morphology, even when elastic and

inertial effects are unimportant. In this case, localization occurred on a length scale roughly

100 times larger than in the previous cases showing principally the effect of greatly increased

thermal conductivity and reduced heat production due to the much lower flow stress in this

material. This simulation also showed how localization can be Initiated by thermal boundary

layer propagation in the absence of any other perturbation.
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Another concern is the concept of the width of a shear band. For the particular case of

linear thermal softening with the flow law used here, a time-independent, post-localization

band width can be defined because the spatial profiles of velocity and plastic strain rate

become asymptotically constant following rapid localization. However, even in this case the

temperature profile continues to evolve after localization. For any other thermal softening

behavior, the post-localization profile of plastic strain rate will also continue to evolve, more or

less rapidly as determined by its deviation from linear thermal softening. When elasticity,

strain hardening, or inertial effects are added, the picture may become much more

complicated. Hence, there are at least two and perhaps several time-dependent "widths" for a

shear band. Exactly which bandwidth should be compared with an experimental

measurement or a different calculation is a matter for case-by-case consideration.

The minimal finite element method employed here has proved adequate in the cases

presented but more sophisticated methods are needed to fully explore these field equations.

Careful initial mesh refinement and a very small temporal integration error tolerance had to be

used at times. Error control problems were most severe for the elastic cases of Section 4.2.

Since spatial discretization errors were not controlled, some simulations attempted could not

be performed satisfactorily. The initial mesh and other parameters controlling the numerical

solution were varied in each case reported to obtain results (hopefully) independent of these

quantities, but questions of accuracy remain. When the location of large gradients cannot be

predicted a priori, adaptive meshing of some sort becomes essential to obtain complete

results at reasonable computational expense.

Although this one-dimensional problem has been much studied numerically in recent years

(most extensively by Batra and co-workers [Batra 1987, 1989; Batra and Kim 1987, 1988,

1990; Batra and Wright 1988]), its parameter space is far from completely explored, even

qualitatively. Effects of combined shear and compression, of particular relevance to ballistic

applications, have scarcely been addressed as Is the case for possible effects of phase

transitions or a transition In dislocation-drag controlling mechanism. With sufficiently robust

and efficient numerical techniques, systematic mapping of the parameter space will allow

dc.ermination of scaling laws for quantities such as localization strain and magnitude of stress

collapse during localization which are needed in order to develop a damage mechanics for
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shear bands. Lastly, It seems likely that understanding of more complex two- ar

three-dimensional shear band problems will be enhanced by the solution of appropriate

one-dimensional subproblems.
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Figure 1. Plastic Strain Rate Surface at = 500/s for the Rigid, Perfectly Plastic, Linear

Thermally Softening Material Model (g - g2 ).
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Figure 17. Stress Surface for the Case of Figure 16.
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Figure 18. Temperature Surface for the Case of Figure 16.
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Figure 19. Temperature at TO 330/s for the Material Model as in Section 4.3 and Table 4.
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APPENDIX:

NUMERICAL METHOD
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We employ a semidiscrete Galerkin finite element method (Becker et al. 1981) which is

based upon a weak spatial formulation of the field equations (Equation [15]). In view of the

dissipation introduced by heat conduction, we shall assume that smooth and bounded

initial/boundary data will not lead to solutions which develop singularities in finite time. In

particular, we assume that at each time t any solution, u (-, t) = [- (., t), 0 (., t), s(., t), x(., t)

lies in the Sobolev space

H1([0,1]) = { 1 11 u.2 = [u(y).u(y) + u,(y).u,(y)]dy< }

and is smooth enough so that all the integrals appearing in the variational formulation below

are finite. The specifics of the weak formulation also depend, of course, on the boundary

conditions. For example, if we augment Equations (15) and (19) with

u(1,t) - V(t), kOe(1,t) = O(t), (A-1)

where V and 0 are the velocity and heat flux imposed at the outer boundary, and use trial and

test functions from H1 , then there follows a:

Variational Formulation. At each time t> 0, determine functions U E vt([0,1 ]) and

0, s, ve H'([0,1 ]) such that,

f iady = - -(1/p) f say dy, for a# a E. H,', (A-2)

f6bdy -k 8by dy + f' SPbdy+ Q(t)b(1), for allbE H1 , (A-3)

9 cdy = - f[ c, + jc]dy + p V(t)c(1), for all c E H, (A-4)

dy (/ddyfy, for all d E H , (A-5)
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where

lo = {a e H' Ia(O) = 0, a(1) = V(t)}

and

H,'= {a E H' Ia(0) = 0, a(1) = 0}.

Since only first order spatial gradients of the trial and test functions appear in Equations

(A-5HA-5), it follows that a minimal finite element approximation is obtained by using

piecewise, linear global basis functions (ibid). Assuming N nodes, the resulting system of

nonlinear, first-order, ordinary differential equations for the nodal unknowns {l), 0,, s,, Wv,} (t)

may be written as

ijbi-j P-1 AjSj, Mj j~j = -kHijOj + P,,s + SNQ(t), (A-6)

M,/j= +(DijOj + W, - SNV(t)), Mij'Y = ZIJS,. (A-7)

Here, 8(J indicates the Kronecker delta, i varies from 1 to N, repeated indices are summed

over this range, a superposed tilde indicates that all elements of row and column 1 and N of

the matrix have been set to 0, and

Mi £ OOdy, D1j - f jdy Hij = Yj £ , (A-8)

P,, - f' . Z1 =£(iK~,~y w, - £ '~d,(A-9)

in which $, is the global basis function for the il node. The discrete forms of the initial

conditions at t = 0 are obiained simply as

-o,(0) - -o(y,,0), i - 1,-.,N,

where -o(y,0) is the initial value of the velocity and similarly for (,. s1, Wil. The Integrals are

evaluated element-wise using two-point Gauss quadrature which is exact for the terms in
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Equation (A-8). As it is inconvenient to implement a Dirichlet boundary condition such as

Equation (19), directly, a penalty method is used instead (ibid). Lastly, to avoid ill-conditioning

of Equations (A-6) and (A-7), which may occur because a highly nonuniform mesh is required

to resolve the large gradients which occur during shear band formation, each row is scaled by

its diagonal element so that

Mij=- 1, i = 1,...,N no sum on i).

Application of the finite element method has reduced the original IBVP to an initial value

problem for which a variety of numerical methods of solution are available. However, the

kinetics of shear band formation render this system numerically stiff and use of an appropriate

method is essential if reasonable efficiency is to be obtained.* The work of Gear (1971),

among others, has led to the development of sophisticated algorithms for the integration of

such systems based on backward difference formulae and the particular package employed

here is the LSODES code written by Hindmarsh (1983) as part of the Lawrence Livermore

ODEPACK library. This implementation of the Gear method features a variable time step and

variable order, backward difference formulae which are controlled automatically in order to

satisfy a step-wise error criterion.

The full system of nodal equations in assembled form may be written

Mw - f(w) or w = M-1 f(w), (A-10)

where w . (101l, Osl, VI, .. O'U N, sN, VN) . LSODES requires the explicit form of the

system (Equation [A-1012) and some approximation of the Jacobian, J - M-1 a flaw, which is

treated internally as a general sparse matrix. To determine the sparsity structure of J, we

observe that since M _ MT is diagonally dominant (only the fourth subdiagonal is nonzero), it

follows that M -1 is also diagonally dominant and all but every fourth subdiagonal is identically

zero. As a f/law is banded, it follows that J is diagonally dominant (although not banded).

*Roughly speaking, a system of ordinary differential equations is numerically stiff if, when conditionally stable integration
methods are used, the maximum "acceptable time step is governed by the stability of the method rather than by its
auracy.
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To exploit this structure, the shear band code used allows the user to specify the width of a

band inside of which only nonzero elements of J are stored, and outside of which all elements

of J are treated as zero. Although algorithms for sparse matrices incur more computational

overhead than those for full or banded matrices, the reduction in floating point operations and

constitutive function evaluations appears to outweigh this overhead and so yield improved

computational efficiency. For the calculations reported in the sequel, the J-bandwidth used

corresponds to 20 elements, although using 10 elements usually produced identical results.
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